


• Shading

• Material assembly

This paper assumes the use of the PBR rendering workflow,

which is commonly used by modern game engines and off-line

render engines alike. The PBR, or physically based rendering

[5] workflow, takes into consideration real-life properties of

surfaces in order to calculate the final output of each pixel

on the screen, which makes for a more accurate and easier to

deal with workflow in general. Most concepts can be applied

to other workflows, such as Specular/Glossy, however.

Practical examples will be presented using softwares such

as Allegorithmic’s Substance Designer and Substance Painter

[7] [8] for material authoring and painting, Quixel’s Megascan

database [9] for scanned PBR textures and Epic’s Unreal Engine

5 [10] as the graphic motor and game engine. They are not

all for the same assets or even in the same style, even though

there is a main test object, which is a scabbard model from the

Megascan database [9], not all exemplified techniques would

apply to it.

A. Terminology in material development

The terminology when working with material development,

either for games or otherwise is quite vast and it’s easy to be

overwhelmed by. Besides, some terms seem interchangeable,

and even might be in some cases. With that said, they will be

clarified for the purpose of streamlining the understanding of

this work.

The most basic layer of the material development that will be

touched upon in this paper is the shader which, in short, refers to

programming on how the pixels on a surface will be calculated

[11] [12]. Most game engines and off-line renderers allow for

some degree of customization of the shaders themselves. Either

allowing the user to alter properties in the usage of textures and

other parameters on top of the base shader calculations, as is

the case with Unreal Engine [10], or changing how the shader

works fundamentally [13]. The later is usually something only

a technical artist would work with.

The term material is sometimes mistakenly used interchange-

ably with the shader, and is actually the final result of the

shader when setup, with its parameters and textures. Two

vastly different materials can in fact be made using the same

shader when these are changed.

Textures are the color and grayscale images used for driving

the shader’s parameters [5], such as reflectivity, base color,

metallicness and others. These can be image files or procedural

in nature.

Post processing refers to an image processing effect applied

after the rendering of the scene, and can be used to create

many stylized looks. A common use case being cel shading

[14] in order to achieve a cartoonish look. Post processing

won’t be discussed at length in this paper, but can be of great

importance in the final look of a game and should, therefore,

be kept in mind.

III. IDENTIFYING AND PLANNING MATERIALS AND

SHADERS

Even before the artist gets on to creating a material or shader

for a game (Fig. 3), they need to keep in mind a number of

factors, specially when working in a team. Technically speaking,

for example, a game might be developed for a platform, such

as a smartphone, which can be quite limiting [15], that in

turn limits how complex your shader and how large your

texture resolutions can be in order to work appropriately for

the target systems. While artistically your game might be

stylized in a way that will require an outline, which needs

to be specified on a shader or post-processing level [14], or

additional texture work for internal lines. It might also require

specific UV layouts in order to properly use the texture setup.

The stylistic and aesthetic choices also dictates how large your

textures resolutions need to be in order to properly represent

the artistic vision for the assets. Besides the development

of the shader and the material themselves, having proper

planning on how they are applied makes it possible for the

artist to use them most efficiently. Larger surfaces usually

require different mapping techniques than smaller ones. Some

geometries might themselves benefit from texture repetition

with proper modelling and UV mapping [16]. Besides, different

types of assets might have different approaches to aspects such

as Texel Density [17] for some more information on the subject

refer to IV-A.

The method Beddow [6] uses when approaching the analysis

of a material and its components is a great way to understand

the needs of an asset and its materials as well. Even though

in his example the subject is a single material with multiple

layers, a similar approach can be used on a single asset with

multiple materials, if so required. For example, in the scabbard

model exported from the Megascan’s[9] library (Fig.2), multiple

materials can be perceived:

• a darker, surface-level leather with spotty details;

• a lighter, rougher leather that appears wherever the surface

is scratched or branded;

• an even rougher and raw leather at the back;

• the threads going around the frame of the scabbard;

• the metal for the tacks holding the leather straps together.

Figure 2. Scanned scabbard model avaiable on the Megascan [9] library

As mentioned before, knowing the artistic and technical

requirements for the project dictates how to approach these

2



different layers. On a technical level, the artist might treat all of

it as an unique material with different parameters for each layer,

that would be taken care of, on its majority, by hand painting

textures in a software, such as Substance Painter [8], using

a scanned material, which is available on this specific asset,

or by blended materials on an engine level, method further

discussed at Section IV-B. Each with its own advantages and

disadvantages, as seen at [18]. On an artistic level, the artist

would need to take into account the aesthetic of the game and

specifications from the art direction. Including this identification

and analysis step of creating a material, a possible workflow

is exemplified in Fig. 3.

Figure 3. Steps on creating a material

IV. MATERIAL CREATION AND TECHNIQUE VARIATIONS

There are multiple ways in which a 3D artist can make a

more efficient use of shaders, textures and UV mapping for each

purpose. The decisions made in each step are consequences of

the planning phase and overall direction of the game. A brick

surface isn’t created the same way a character’s face is, for

example.

A. UV Mapping

It’s important to keep in mind some fundamentals on UV

mapping when optimizing the UV usage on each asset. It’s

notable however that the model UV mapping is not always

the texturing artist responsibility, but of the modelling artist.

That being said, proper communication is needed since the

way UVs are planned and laid out greatly affect how materials

are created and used.

The first thing usually taken into consideration when map-

ping a 3D model is to make the most efficient use of UV space

possible, so that the texture has the least amount of wasted

pixels and the greatest resolution density, that is also known

as ”Texel Density”, ”Pixel Density” or just ”Texture density”

[17]. What is an efficient use of UV space changes according

to each model and game needs, you might specifically want

a part of your model to have lower density than the rest. A

character’s shoes don’t often need as much resolution as its

face, for example. Also, the same asset can have its UV seams

created in ways that prioritizes either having less distortion, or

fewer seams [19]. That decision is driven by the nature of the

material, which should be considered on the analysis of material

step. An inorganic pattern with straight lines quickly loses its

appeal when the UV is distorted and has misplaced edge cuts,

while an organic texture does not usually suffer nearly as much

as from this phenomenon. UV mapping also depends on how

the textures are created. If the surface uses either preexisting

authored or scanned surface’s textures, tiled or not, this aspect

is far more relevant than when a texture is hand painted or

projected. The reason is that the later techniques mostly ignore

edge seams, rather projecting maps, placed on a 3D view on to

the UV space. In some cases hand painted textures or masks

are going to be mixed to create the final material. For example,

in Fig. 4 we can see a scabbard from Megascan’s library [9]

with 3 variations of leather. The rightmost example being just

the scanned material from the library and the other two that

were created using a combination of painted masks and tiled

scanned surface textures. Neither of them uses any textures

with a higher resolution than the other, but there are differences

in finer details and modularity between them. Whenever these

workflows come into play, the artist must take into consideration

how each of these textures will play a role in the final asset in

order to properly create them.

Figure 4. Comparison between a scanned material and two variations on a
workflow that uses masking and tiled textures

An important technique in regards to UV mapping is the use

of UV overlapping, which can be used to great effect depending

on the type of asset being created. A rather common use case is

to take into account model symmetry (Fig. 7) when it requires

no texture variation from side to side, which is quite common

for mobile games. For example, leveraging the symmetry might

lead to doubling the pixel texture density for that portion of

the model or even more depending on layout possibilities. That

is not, however, the only possible use for UV overlapping,

3



another reason to use it is in situations with repeated meshes,

such as buttons, bolts and others. They can potentially increase

the texture density many times over. For example, a character

model with the same button multiplied many times over along

its clothing can either have a higher resolution in the end,

or have these parts of the asset occupying a much smaller

portion of the UV space, if they share the same mapping. This

technique can even be taken a step further by using another

technique, mentioned at IV-B, in which different models that

can use the same material, such as the button, might reuse

the same material instance in models with similar or identical

UV layouts. A variation of this technique takes into account

using a texture atlas. For example, in the same UV space one

might have some variations of the same textures, or textures of

similar nature, for which models with the same, or similar UV

layouts are mapped, so that they fit to any one of these textures,

making for a more organic result, while still leveraging the

power of UV overlapping. That’s an usual approach for creating

the textures for character hair cards as showed in Fig. 5 and

Fig. 6.

Figure 5. Example of a character’s hair texture atlas

Figure 6. Example of a character’s hair utilizing overlapping UV’s for texturing

Figure 7. Example of a character using UV symmetry to make a more efficient
use of UV space on the clothing

B. Leveraging material layers and material slots

Some materials might require the usage of material slots

[20], layers [18] or both. These tools are common to most

3D software even though the implementation or terminology

might vary. These are other options to assign different materials

besides simply assigning the appropriate values on the textures

themselves, either by painting or assigning these values with

parameters on the shader. They can, most times, be used

interchangeably but whenever applicable material slots are

preferable. Due to material layers requiring more instructions

and being, therefore, more expensive performance-wise [18].

Each works on a different level, material slots are assigned

per-face, while material layers are blended through a function

on whatever 3D software the artist is working on, such as

Fig.10 in Unreal Engine. Layers are mostly used for materials

that share the same faces, as they are blended on a per-pixel

level and they work to great effect on scratched surfaces such

as the leather on Fig.4, besides having the edge in creating

that blending while also working with materials that require

any kind of tiling (Section IV-C) or modularity. On the other

hand, material slots require a different material for each slot,

needing no extra functions or shader calculations in order to

4



work. For these reasons it has a better performance than layered

materials, while still allowing the same degree of flexibility

such as allowing tiling of textures.

With that, not only should the artist keep in mind what

technique will be used for each asset, but also that they can

be mixed and matched. For example, an asset that requires an

organic transition between materials on its edge but has an

uniform use of a single material otherwise can have 3 material

slots. Which would be one for each surface with solid materials

and one for the transition, such as Fig.8, taking advantage of

the best aspect of each technique.

Figure 8. Material slots view (left), with a leather type in red, another in blue
and the transition portion in green and resulting asset (right)

C. Shader-level UV manipulation and texture tiling

The UV coordinates for each texture can be manipulated

on a shader-level, so that the final texture mapping can be

changed accordingly. This principle can be used for multiple

reasons, such as creating flipbook animations for effects from

textures [21], changing the UV offset over time, moving the

texture, rotating the textures, both of which could be used to

create inexpensive (performance-wise) texture animations, and

even texture distortion, which can be used for many effects,

such as flowing lava textures or even fire [22].

The most common usage of UV manipulation is texture tiling,

which is a rather basic concept in 3D texturing, referring to the

repetition of textures in the UV space according to a parameter.

In Unreal Engine [10] for example, the UV coordinates can be

multiplied in order to output the final texture tiling. There are

many different applications besides the basic one which is to

repeat the textures for the material by themselves. An example

is detailing on top of preexisting textures, usually to achieve

micro detailing in surfaces such as skin [23]. In which case

the modelling artist creates a high resolution model with skin

detailing that can be projected to create a normal map, but

does not have micro details, then, when the final material is

assembled, these are layered on top. Also, even if the texture

only uses traditional tiling, the tiled textures can be blended in,

either on top of each other, with overlay, screen, opacity maps,

normal map blending and others, or on a painting software,

using layering on a texture level, in a similar fashion to the

material layering mentioned in IV-B, with a single texture set

[24].

Besides that, there are tiling methods other than traditional

tiling that can be used for different purposes, often at a

performance trade-off. Two of them are the aperiodic tiling

method [25], and texture bombing [26]. They serve similar

purposes, both tile textures in ways that doesn’t show an

obvious pattern, unlike traditional tiling, there are some key

differences in the way they should be applied though. Aperiodic

tiling requires the tiles to be driven in a way that each texture

tile fits into all surrounding tiles, which makes it so that their

boundaries still exist and could still be identified if the edges

were framed for example. But they don’t repeat the same

visual over, while still maintaining the patterns within the

tiles intact, which works great for caustics[25], hard surfaces

and handmade patterns. Texture bombing, on the other hand,

samples portions of the texture and blends these samples over

each other, in a way that makes the tiling unrecognizable. That

makes it unhandy to describe patterns, while working perfectly

for surfaces such as leather, granite, or any other surface that

has detailing too big for traditional tiling to handle without

making the repetition obvious, but still too little to be described

on either the base model or it’s projected maps.

D. Texture picking, projecting, painting and authoring

The creation and selection of textures can be done in various

ways. The most basic of which is choosing them from a

texture database, such as Megascans [9], TextureHaven [27]

and others. These are a great way to make plausible materials

using scanned textures. However, they do not work for all

situations, depending on your decisions when analysing the

needs of material that approach might not even be an option,

for example, when creating stylized materials. Besides that,

these textures don’t often work by themselves. Depending on

the meshes, their UV layouts and texel density, the shader

will require additional work in order to properly utilize these

textures. A set of textures from a single scanned source might

also not be enough to describe the entire surface of an object,

requiring layering IV-B or to be used in texture painting.

Texture painting refers to the painting of texture maps and

masks, that can be done in 2D or 3D painting softwares such as

Substance Painter [8]. In which you paint directly on top of the

3D model, having instant feedback through a real-time render

engine. This technique is pretty flexible, being integrated in a

multitude of workflows and styles. The artist can just paint on

top of the model for greater control on the final output, besides

being able to go for a more simplified/stylized look. Besides

that, options are given to combine this painting with fill layers

using authored or scanned material textures and generators

[28] to create procedural masking and colors, both for stylized

and realistic looking work.

Material authoring or, sometimes, just ”material creation”,

which might get confusing, so will be referred to as authoring

[29] in order to avoid confusion, refering to the creation of

material’s textures using shapes, attributes, preexisting assets,

such as 3D models or textures, and scripting in softwares such

as Substance Designer[7]. These can be used by themselves or

combined with painting and masking workflows for the final

5



result. In Fig. 9 we have an example of a marshland texture

authored in Substance Designer without the use of any external

software. It has a procedural ”wetness” property that allows it

to blend from a flooded marshland texture to a dry one. Since

this workflow also allows the use of preexisting assets [6], it

makes for a greatly flexible and complete material creation

workflow, that works for great effect when used with scanned

textures, for example.

Figure 9. An example of an albedo texture(right) created using substance
designer and its graph (left)

E. Shading

The shader will determine how the created/selected textures

will affect the final material output. It is at this stage that

things like the tiling, mentioned at IV-C and shader-level

layering, mentioned at IV-B are implemented. What functions

are available out of the box, how much customization is

possible, among other particularities depends on the rendering

software of choice. As said before, the tests and most of the

research for this paper were done in Unreal Engine 5 [10],

which offers a great array of tools out-of-the box and a visual

scripting system, called material editor [30], requiring no coding

from the artist in order to create detailed and efficient materials

in a variety of styles.

In the example Fig.10 we have a graph describing a material

function that toggles between two tiling techniques IV-C, that’s

part of the shader. However, that’s just a high-level way to

modify the shaders in Unreal, which as many other software,

allows the user to code their own shaders from scratch and

create variations of the existing ones [13]. Whether the artist

works with the available tools to create shaders or program

them from scratch, an important aspect is to be organized in

a way that they can be reused efficiently for more materials

whenever possible. The reason is that certain parameters and

functions setup or a layering setup might work for multiple

materials in the same way. Unreal Engine’s hair shader, for

example, can be used for vastly different hair styles, colors and

models as long as the artist generates the appropriate textures

[31], the example in Fig. 6 was assembled using a shader that

way.

Figure 10. Material layer function overview

F. Material assembly

At last we have the assembly, which is to say, use the shader

and the textures to create the final material. This step varies

greatly depending on the workflow and assets chosen. There are

one of a kind materials, for example, where the assembly and

shading are one and the same, since the material isn’t supposed

to be modular or reusable. When the material is modular and

can be used for multiple purposes is when this step is most

important, since you can have all the textures and shader

needed for a material ready, assemble it and assemble another

reutilizing the shader or textures to make more variations of

the same asset or to make different assets entirely.

V. CONCLUSION

Having set out to analyse and study different methods for

the creation of materials for games, creating its textures and

shaders it became clear how varied and deep this process might

be. More than just going for the most detailed and high fidelity

materials possible there are other aspects need to be taken into

consideration. The artist or the art team working on a game need

to have in mind as many of the tools and techniques available

in order to achieve the final result, since not all assets are

created the same way and a technique that works for one might

not even be available as an option for another. Even though

art direction, stylistic decisions and art fundamentals weren’t

discussed much in this work, they are of the utmost importance.

These aspects of creating an asset can be hindered by a lack of

technical knowledge. Understanding of the techniques herein

described opens up much more possibilities than trying to solve

every material problem through higher and higher resolution

textures every time. Which might make it a bad experience for

the player, and even the developers themselves, since working

smarter and leveraging some of these methods might make for

faster iteration.

6



Some points were either left untouched or just glossed over.

Specially from a performance standpoint, more tests and a

more methodical approach would be required in order to test

the advantages and disadvantages of similar techniques, such as

comparing the different tiling methods. Also, the examples were

few and far between. Having a paper or tutorial touching on a

specific workflow using the mentioned techniques while both

going more in-depth on it and presenting more use cases would

greatly help in exploring this paper’s topics. And even more

so, even taking into consideration that this work’s intention is

presenting some of the possibilities when working with game-

ready materials and textures, there are still many techniques and

tools to cover. Of note, also, is the fact that textures also play

gameplay and narrative roles, which weren’t mentioned, but

an artist should look into and could relate with the techniques

of this work.

REFERENCES

[1] M. Labschütz, K. Krösl, M. Aquino, F. Grashäftl, and

S. Kohl, “Content creation for a 3d game with maya

and unity 3d”, Institute of Computer Graphics and

Algorithms, Vienna University of Technology, vol. 6,

p. 124, 2011.

[2] E. Games. (2021). “Performance guidelines for artists

and designers — unreal engine documentation”, [Online].

Available: https : / / docs . unrealengine . com / 4 . 26 / en -

US/TestingAndOptimization/PerformanceAndProfiling/

Guidelines/ (visited on 07/20/2021).

[3] Microsoft. (2021). “Textures”, [Online]. Available: https:

/ / docs . flightsimulator . com / html / Asset Creation /

Textures.html (visited on 07/20/2021).

[4] A. Blizzard. (2021). “Call of duty: Modern warfare sys-

tem requirements - blizzard support”, [Online]. Available:

https://us.battle.net/support/en/article/244496/ (visited

on 07/17/2021).

[5] W. McDermott, The pbr guide. [Online]. Available: https:

/ / substance3d .adobe . com/ tutorials / courses / the - pbr-

guide-part-1.

[6] A. Beddows, Artstation - why you are struggling to learn

substance designer - breaking an idea down. [Online].

Available: https://www.artstation.com/learning/courses/

xQY / why - you - are - struggling - to - learn - substance -

designer/chapters/P5pA/breaking-an-idea-down.

[7] Adobe, Substance designer, version 2021.1.1, Jun. 13,

2021. [Online]. Available: https : / /www.substance3d.

com/products/substance-designer/.

[8] ——, Substance painter, version 2021.1.1, Jun. 13, 2021.

[Online]. Available: https : / / www. substance3d . com /

products/substance-designer/.

[9] Quixel. (2021). “Quixel megascans”, [Online]. Available:

https : / / quixel . com / megascans / home/ (visited on

06/13/2021).

[10] Epic Games, Unreal engine 5, version 2021.1.1, Jun. 13,

2021. [Online]. Available: https : / /www.substance3d.

com/products/substance-designer/.

[11] M. Bailey and S. Cunningham, Graphics shaders: theory

and practice. AK Peters/CRC Press, 2009.

[12] B. Karis and E. Games, “Real shading in unreal engine

4”, Proc. Physically Based Shading Theory Practice,

vol. 4, no. 3, 2013.

[13] E. Games. (2018). “Shader development — un-

real engine documentation”, [Online]. Available:

https : / / docs . unrealengine . com / 4 . 26 /

en - US / ProgrammingAndScripting / Rendering /

ShaderDevelopment/ (visited on 01/04/2021).

[14] ——, (2018). “Unreal engine post processing - youtube”,

[Online]. Available: https://www.youtube.com/watch?v=

cQw1CL0xYBE (visited on 01/04/2021).

[15] J.-W. Lee and Y. Kim, “Rendering performance evalu-

ation of 3d games with interior mapping”, Journal of

Korea Game Society, vol. 19, no. 6, pp. 49–60, 2019.

[16] M. Hassan, Proposed workflow for uv mapping and

texture painting, 2016.

[17] M. Andrieshyn. (2018). “What is texel density and how

to master it”, [Online]. Available: https://www.youtube.

com/watch?v=5e6zvJqVqlA9 (visited on 07/18/2021).

[18] E. Games. (2021). “Material layers — unreal engine

documentation”, [Online]. Available: https : / / docs .

unrealengine.com/4.26/en-US/RenderingAndGraphics/

Materials/MaterialLayers/ (visited on 07/08/2021).

[19] T. Foundry. (2021). “Working with uv maps”, [Online].

Available: https : / / learn . foundry.com/modo/content /

help/pages/uving/working with uvmaps.html (visited

on 07/17/2021).

[20] E. Games. (2021). “Fbx material pipeline — unreal

engine documentation”, [Online]. Available: https://docs.

unrealengine.com/4.26/en-US/WorkingWithContent/

Importing/FBX/Materials/ (visited on 07/08/2021).

[21] ——, (2021). “Render a flipbook animation — unreal

engine documentation”, [Online]. Available: https://docs.

unrealengine.com/4.26/en-US/RenderingAndGraphics/

RenderToTextureTools/5/ (visited on 07/19/2021).

[22] E. G. Simon Trümpler. (2018). “’stylized vfx in rime’

by simon trümpler — unreal fest europe 2018 — unreal

engine - youtube”, [Online]. Available: https://youtu.be/

ExD p3hsV80?t=241 (visited on 07/19/2021).

[23] A. Jorge Jimenez. (2013). “Jorge jimenez – next

generation character rendering”, [Online]. Available:

https : / / docs . unrealengine . com / 4 . 26 / en - US /

WorkingWithContent/Importing/FBX/Materials/ (visited

on 07/08/2021).

[24] Adobe. (2021). “Layer stack — substance 3d painter”,

[Online]. Available: https : / / substance3d .adobe .com/

documentation/spdoc/layer-stack-29130767.html (visited

on 07/20/2021).

[25] J. Stam, Aperiodic texture mapping. Citeseer, 1997.

[26] S. Glanville, “Texture bombing”, GPU Gems: Program-

ming Techniques, Tips, and Tricks for, vol. 1, 2004.

[27] P. Haven. (2021). “Textures • poly haven”, [Online].

Available: https://polyhaven.com/textures (visited on

12/12/2017).

7



[28] K. Aava. (2021). “Generator — substance 3d painter”,

[Online]. Available: https : / / substance3d .adobe .com/

documentation/spdoc/generator-109608968.html (visited

on 12/12/2021).

[29] Allegorithmic. (2017). “Substance designer - the ulti-

mate 3d material authoring tool - youtube”, [Online].

Available: https://www.youtube.com/watch?v=vVta%

5C LekQxY/ (visited on 07/12/2021).

[30] E. Games. (2017). “Material editor reference — unreal

engine documentation”, [Online]. Available: https://docs.

unrealengine.com/4.26/en-US/RenderingAndGraphics/

Materials/Editor/ (visited on 05/21/2021).

[31] ——, (2021). “Photorealistic character — unreal engine

documentation”, [Online]. Available: https : / / docs .

unrealengine.com/4.26/en-US/Resources/Showcases/

PhotorealisticCharacter/ (visited on 07/19/2021).

8


